# Using Data to Improve Opportunities for Antimicrobial Treatments

### Siân Bladon

#### 3rd Year PhD



Supervisors: Prof. Paul Dark, Prof. Tjeerd van Staa, Dr. Tim Felton



#datasaveslives

### Background



remeas against commarchange metods are exceeded in the other present threat facting humanity, according to England's chief medical officer, who says an Extinction Rebellion-style campaign is medied to save people from antihiotics becoming ineffective in the face of oversus and a lack of As resistance to antimicrobials continues to rise there is a need to reduce overall consumption of antibiotics...

...but this has to balanced with a need to treat patients suspected of sepsis promptly and appropriately

Some studies have looked at timing of treatment and duration of courses – mixed evidence and small cohorts

### **Electronic Health Records**

- Used across primary and secondary care to record patient information
- Increasingly made available for research

| Positives                                | Negatives                                   |
|------------------------------------------|---------------------------------------------|
| Larger cohorts                           | Messy data with high levels of missing-ness |
| More generalisable to general population | Difficult to show causality                 |
| Quicker and less costly                  | Variation in how data is recorded           |

## **Project Aims**

 To integrate sources of routinely collected patient level data to look at how antimicrobials are used in sepsis patients and to identify any areas where this can be optimised

## Study 1 – Exploring the antimicrobial burden of sepsis patients admitted to intensive care

## **Study Aims**

- To use observational electronic health record data to....
  - 1. explore the antimicrobial burden of sepsis patients in intensive care units (ICU)
  - 2. look at the association between use of antimicrobials and mortality

#### Methods – Data Source

#### MIMIC-III database

- Anonymised patient records from a single hospital in the United States from 2001-2012
- 26 tables containing data on all tests, procedures, measurements taken etc. throughout ICU stay

Identifying adults (aged >16) with incident sepsis admitted to ICU between 2008 and 2012

| Criteria | Description                                                                   |
|----------|-------------------------------------------------------------------------------|
| Sepsis-3 | Sequential Organ Failure Assessment (SOFA) $\ge$ 2 and suspicion of infection |

Extracted all demographic data and data around prescriptions and administration of antimicrobials for 30-day follow up period



- Descriptive statistics were used to estimate the antimicrobial burden of cohort
- Individual antimicrobial exposure was summarised in 3 ways



## Analysis

- Descriptive statistics were used to estimate the antimicrobial burden of cohort
- Individual antimicrobial exposure was summarised in 3 ways
- Survival of patients analysed using Kaplan-Meier curves and Cox proportional hazards regression

## Cohort

 Of the 23,749 ICU stays, 8,639 patients (36.6%) met the sepsis-3 criteria

|                                       | All Patients |
|---------------------------------------|--------------|
| No. of ICU stays                      | 8,639        |
| Gender (% male)                       | 56%          |
| Ethnicity (% white)                   | 74%          |
| Age (median)                          | 67.7         |
| SOFA score (median)                   | 5            |
| Elixhauser comorbidity index (median) | 4            |



## Antimicrobials

- Antibiotics accounted for 94% of prescriptions
- Vancomycin most frequently used



- 76% were administered via IV
- Median length of prescriptions was 3 days

|                                         | All Patients |
|-----------------------------------------|--------------|
| No. of courses – median (IQR)           | 3 (2,5)      |
| Total exposure days - median (IQR)      | 5 (3-9)      |
| Cumulative exposure days – median (IQR) | 10 (5-20)    |

|                   |       | No. of Courses | Total Exposure<br>Days | Cumulative<br>Exposure Days |
|-------------------|-------|----------------|------------------------|-----------------------------|
| Age Group (years) |       |                |                        |                             |
|                   | 17-25 | 3 (2-5)        | 6 (3-11)               | 12 (5-22)                   |
|                   | 56-65 | 3 (2-5)        | 6 (3-10)               | 11 (5-23)                   |
|                   | >86   | 3 (2-5)        | 5 (3-8)                | 9 (5-16)                    |



|                  | I   | No. of Courses | Total Exposure<br>Days | Cumulative<br>Exposure Days |
|------------------|-----|----------------|------------------------|-----------------------------|
| SOFA Score Group |     |                |                        |                             |
|                  | 2-3 | 3 (1-4)        | 5 (3-8)                | 8 (4-16)                    |
|                  | 8-9 | 4 (2-6)        | 7(3-13)                | 14 (7-26)                   |
|                  | >13 | 4 (3-6)        | 4 (2-10)               | 11 (5-29)                   |



|                        |     | No. of Courses | Total Exposure<br>Days | Cumulative<br>Exposure Days |
|------------------------|-----|----------------|------------------------|-----------------------------|
| Elixhauser Index Group |     |                |                        |                             |
|                        | <0  | 3 (2-4)        | 5 (3-8)                | 9 (5-18)                    |
|                        | 1-5 | 3 (2-5)        | 5 (3-9)                | 10 (5-19)                   |
|                        | >14 | 4 (3-6)        | 7 (4-11)               | 15 (7-26)                   |



## Survival



Overall 30-day survival for the cohort was 78%.

Graphs show survival stratified by groups

Lower survival (yellow line) was seen in older patients, those with a higher SOFA score, and a higher comorbidity index



### Survival – Cox proportional hazards model

| Characteristic A                 | Adjusted Hazard Ratio | 95% CI     |
|----------------------------------|-----------------------|------------|
| Age (years)                      | 1.02                  | 1.02, 1.02 |
| Gender                           |                       |            |
| Female                           | _                     | _          |
| Male                             | 0.92                  | 0.84, 1.01 |
| Ethnicity                        |                       |            |
| Black                            | _                     | _          |
| Hispanic                         | 1.26                  | 0.94, 1.70 |
| Other                            | 1.2                   | 0.99, 1.45 |
| White                            | 1.14                  | 0.98, 1.34 |
| Admission Type                   |                       |            |
| Elective                         | _                     | _          |
| Emergency                        | 2.4                   | 1.73, 3.33 |
| Urgent                           | 1.88                  | 1.11, 3.19 |
| Elixhauser Comorbidity Index     | 0.99                  | 0.97, 1.01 |
| tt(Elixhauser Comorbidity Index) | 1.02                  | 1.02, 1.03 |
| SOFA Score                       | 1.33                  | 1.30, 1.37 |
| tt(SOFA score)                   | 0.96                  | 0.95, 0.97 |
| No. of antimicrobials prescribed | 1.2                   | 1.17, 1.22 |
| No. of exposure days             | 0.92                  | 0.90, 0.93 |

#### Summary

- Antimicrobial use does vary in relation to patient's levels of disease severity and comorbidities
- Cox regression showed that a higher SOFA score and number of antimicrobials prescribed was associated with higher mortality
- BUT a higher number of exposure days was associated with lower mortality

Study 2- The evaluation of risk factors and long-term outcomes in patients with community or hospital- acquired sepsis: a retrospective cohort study using linked primary and secondary care data

#### Aims



Do these differ

#### Aims



#### Study Design

Data source – CPRD (England) and SAIL (Wales) – linked GP records to hospital admissions Index date – hospital admission with sepsis -3 -2 -1 2 3 Years Match sepsis cases to control patients (i.e. patients without sepsis) **Risk factors:** Long-term outcomes: Multivariable logistic regression Survival analysis – Cox regression • model with development of sepsis model as the outcome



• There are many different ways we can use routinely collected patient data to explore complex conditions such as sepsis!

• Thank you for listening!