Rapid Translational Incubator Networking and Webinar

Generic aspects of Study Design for Experimental Medicine Studies and Trials

Thursday 17 October 2019, 12 – 12:30

Today's webinar

- Generic aspects of Study Design for Experimental Medicine Studies and Trials
- Q&A

Speaker: Chris Sutton, Senior Lecturer in Clinical Trial Statistics, Centre for Biostatistics, The University of Manchester (and Director of Methodology, Manchester Clinical Trials Unit)

Host:

Matt Krebs, Senior Lecturer in Medical Oncology, The Christie NHS Foundation Trust. BRC Cancer Precision Medicine theme

Outline

- Linking design to aims/objectives
- Principles of trial (or study) design
 - ≻minimise bias
 - maximise efficiency
 - ➤ maintain quality
 - and examples of how to address these
- Sample size
- Manchester Clinical Trials Unit (MCTU)
 > purpose and role
- Biostatistics Collaboration Unit

Study objectives

- Whatever the phase of trial or purpose of study, the key is to establish *specific* objectives (or research questions) which can be *assessed* using *valid* (and *reliable*) outcome measures
- Study objectives lead to the choices for:
 - ≻Design
 - ≻Outcome measures
 - ≻Sample size
 - Statistical analysis

Principles of trial design - I

- All trials/studies should be designed to:
 - ≻Minimise *bias*
 - systematic deviation from the true parameter of interest (e.g. 'effect')
 - $\ensuremath{\circ}$ caused by a structural defect in the trial
- When assessing efficacy we should ideally use ...
 - Randomisation with allocation concealment
 - \circ avoids selection bias
 - Blinding (although may be limited in applicability)
 - limits performance and (differential) ascertainment bias

Principles of trial design - II

- All trials (or studies) should also be designed to:
 ➤Be efficient
 - use the optimal design to address the key objective(s)
 - aim to collect sufficient and appropriate data to address the trial objectives and use them well!
 - Maintain ethical (and practical) acceptability
 - Maintain quality

Phase I studies

Key objective is to determine maximum tolerable dose (MTD)

- Often to investigate pharmacokinetics and relationship with dosing
 - but traditionally separately from MTD assessment
- Traditionally uses 3+3 design
 - > 0/3 have toxicity escalate dose
 - Otherwise recruit 3 more
 - 1/6 have toxicity escalate dose
 - 2/6 have toxicity declare dose MTD
 - ≥2/6 have toxicity declare previous lower dose MTD
- OK, but inefficient ...
- Alternatives, such as the continuous reassessment method (CRM) are more *complex* but more *efficient*

Phase II studies

Primary aim to assess whether efficacy is likely at the MTD

- Traditionally uses single-arm designs
 - Simon two-stage design (Simon, 1989)
 - Allows stopping if futility (i.e. effect likely to be insufficiently large) is established at end of Stage 1
 - If not futile at end of Stage 1, continue to recruit to (maximum) sample (Stage 2) to decide whether to progress to Phase III trial
- No control so reliant on appropriate historical controls
 - Substantial risk of misspecification of control outcome data

Phase II studies

- - ➤multiple dose arms?
 - ≻extensions to Simon's design (Thall et al., 1988)
- Have far larger sample sizes than nonrandomised Phase II trials
- Again, these are inefficient
 - data from substantial number of patients traditionally not used in the overall assessment of efficacy at Phase II
- Increasing interest in more efficient adaptive, seamless Phase II/III designs

Sample size

- This depends on
 - >Key trial/study objective(s)
 - Chosen design
 - Measure(s) to address key objective(s)
 - >Strength of evidence required to 'move forward'

Manchester Clinical Trials Unit (MCTU)

- Aim to collaborate and conduct high-quality clinical research that leads to individual and societal benefit.
- MCTU works with you to develop your application and trial design, and can provide information on:
 - study design;
 - ➤ statistics;
 - protocol development;
 - ➤ trial management;
 - data management with our Electronic Data Capture Database (REDCap Cloud);
 - ≻quality assurance.

See https://www.bmh.manchester.ac.uk/research/manchester-ctu/

Biostatistics Collaboration Unit (BCU)

- Based in Centre for Biostatistics, School of Health Sciences
- BCU provided general statistical expertise for grantfunded research
- Statistics support for MCTU is provided through trialspecialist statisticians in Centre for Biostatistics / BCU
 - Co-Investigator (Lead Statistician)
 Academic in Centre for Biostatistics
 - Trial/Study Statistician based in BCU
 - Research Associate or Research Assistant
- More on BCU in next webinar!

Rapid Translational Incubator Networking and Webinar

Thursday 21 November, 12-12:30 Making best use of statistical advice and support in research

Jamie Sergeant, Lecturer in Biostatistics, Centre for Biostatistics, The University of Manchester

